제어 및 신재생 에너지 연구실

Contact

- Professor: Sung-ho Hur (shur@knu.ac.kr)
- 사진
- http://cnre.knu.ac.kr Tel : +82-53-950-7832 ٠

٠

Room 805, IT-1, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea ٠

제어 및 신재생 에너지(C&RE) 연구실에 오신 것을 환영합니다. 연구 관심 분야는, 특히 풍력에너지에 관련하여, 제어, 상태 모니터링 및 모델링입니다.

부유식 풍력에너지	풍력터빈 제어기 실증 및 국산화
 Goal 부유식 해상 풍력 터빈 제어 Research Topics 부유식 풍력 터빈 모델링 부유식 풍력 터빈 제어 시 발생하는 Negative damping 문제 해결 부유식 해상 풍력 터빈의 피드백 최적 제어 부유식 해상 풍력 터빈의 LiDAR 기반 피드포워드 최적 제어 기계 학습 기반 바람 예측을 통한 LiDAR 비용 절감 	 Goal 국내 최초 국산 풍력발전기 제어시스템 개발 Research Topics 국내 최초 풍력터빈 제어시스템 개발 및 국산화 서남해 4.2MW 해상풍력터빈 제어기 개발 및 실증 High Wind Ride Through 및 개별 피치 제어(IP C)를 포함한 고급 풍력 터빈 제어 기술 시험
풍력단지 제어	에너지 인터넷(IoE)
 Goal 해상 풍력 발전 단지의 제어 및 최적화 Research Topics 후류 스티어링 (wake steering) 기술을 이용한 국내 서남해 풍력 단지 최적 화 급전지시 대응, 즉 각 터빈에서 생성되는 전 력을 조정하여 그리드 요구 사항에 맞게 풍 력 발전 단지에서 생성되는 총전력을 조절 	 Goal 순환 에너지 시스템(circulated energy systems)에 사물 인터넷(IoT) 혁신 구현 Research Topics 에너지 인프라 생산성 업그레이드 에너지를 효율적으로 생산하고 전송하는 동시에 재생 에너지 통합을 촉진하여 IoE 기술로 그리드 인프라 개선 그리드의(grid) 모든 데이터를 수집하기 위해 스마트 그리드 기술 적용 육성
과제	저널
진행중인과제: • 초대용량 풍력발전시스템 혁신연구센터 [한국에너지기술평가원] • 풍력발전 제어시스템 국산화 기술개발 [한국에너지기술평가원]	최신 논문: • Comparative analysis of control methods for a wind turbine in normal and gusty conditions. [Control Engineering Practice, 2024] • Reachable set estimation of multi-agent systems under packet losses and deception attacks [Journal of Applied Mathematics&Computing, 2024] • Memory sampled-data control design for attitude stabilization of uncertain spacecraft with random ly missing measurements [Advances in Space Research, 2024]

Control & Renewable Energy Lab

	Contact
사진	 Professor: Sung-ho Hur (shur@knu.ac.kr) http://cnre.knu.ac.kr Tel : +82-53-950-7832 Room 805, IT-1, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea

Welcome to the Control & Renewable Energy (C&RE) lab. Our research interests are in control, condition monitoring, and modelling, with a particular interest in wind turbines and farms.

Floating Wind Turbine	Wind Turbine Control – Real-life Application
 Goal Control of Floating Offshore Wind Turbines Research Topics Ameliorate the negative damping problem in floating wind turbines Feedback optimal control of floating offshore wind turbines LiDAR-based feedforward optimal control of floating offshore wind turbines Machine learning-based wind estimation 	 Goal Development of the first domestic wind turbine control system in South Korea Research Topics Development of a controller for a real-life 4.2 MW offshore wind turbine off the southwest coast of Korea Test advanced wind turbine control technologies, including High Wind Ride Through and Individual Pitch Control
Wind Farm Control	Internet of Energy (IoE)
 Goal Control and optimisation of offshore wind farms Research Topics Optimisation of a real-life wind farm off the southwest coast of Korea using wake steering techniques Regulate the power generated by the wind farm to match the grid requirements by causing the power generated by each turbine to be adjusted 	 Goal Implementation of Internet of Things (IoT) innovation into circulated energy systems Research Topics Upgrade grid infrastructures with IoE technology by producing and transmitting energy efficiently whilst facilitating the integration of renewables Cultivate the application of smart grid technology to collect data all the way to the grid's edge
Projects	Publications
 Ongoing projects: Innovation Research Center for Giant Wind Turbine [KETEP] Development of localized control system for wind power systems [KETEP] 	 Recent papers: Comparative analysis of control methods for a wind turbine in normal and gusty conditions. [Control Engineering Practice, 2024] Reachable set estimation of multi-agent systems under packet losses and deception attacks [Journal of Applied Mathematics&Computing, 2024] Memory sampled-data control design for attitude stabilization of uncertain spacecraft with random ly missing measurements

[Advances in Space Research, 2024]